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ABSTRACT g/634 
An analytical expression p (r)  =No[e(l-RI')B- (1 - P / 9 ) e - ( r E / + R ) ] )  where E is a temperature dependent 

parameter and R is the radius of the base of exosphere, is derived for the density distribution in a planetary 
exosphere. The difference between this distribution and the barometric (Boltzmann) formula is small near 
the base of the exosphere but becomes significant at large r ;  at r = 00 the barometric formula gives a 6nite 
density where our distribution tends to zero. It is shown that according to a strict collisionless exosphere 
model the particles in the velocity space are confined in a region bounded by a hyperbola and a quarter 
circle. Outside this region there are no particles; inside, they are distributed by a Maxwellian law. The 
physical significance of this difference and its effect on the escape rate are discussed. 

Recently opik and Singer (1959,1961) have presented 
a theory that gives the density distribution in a plane- 
tary exosphere. They assume a Maxwellian velocity dis- 
tribution for the base of the exosphere which ejects 
particles into the exosphere. They then calculate the 
density distribution numerically by classifying the con- 
stituents of the neutral exosphere into essentially two 
components : 

1.) The ballistic component, consisting of molecules 
ejected from the base of the exosphere. 

2.)  The orbiting component, consisting of molecules 
circling the planet in elliptic orbits not intersecting the 
base of the exosphere. 

We wish to present an analytic expression for the 
ballistic density distribution, which has two advantages: 
1) It can be compared directly with the barometric 
formula and hence gives more clearly a physical under- 
standing of the opik-Singer theory. 2 )  In a more com- 
plicated problem like that of the thermoionic and photo- 
electric screening of bodies in space, where the potential 
has to be obtained from a Poisson equation, an analytic 
form for the charge distribution is necessary. 

To calculate the ballistic density P T ( I ) ,  we assume a 
Maxwellian velocity distribution a t  the base of the 
exosphere. The flux of molecules ejected from the base of 
the exosphere (at radius R )  with velocity in the range 
V ,  to V,+dV, and V t  to Vt+dVt will be 
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Here M is the mass of the molecule, T the temperature, 
No the number density, V ,  the velocity component 
parallel to the radius vector, V ,  the velocity component 
perpendicular to the radius vector. 

Let u be the velocity of a particle a t  r ( r>R)  which 
was ejected from the base of exosphere a t  velocity v. 
Then by conservation of angular momentum and 
energy, we have 

u:r= V B ,  ( 2 )  

(3) 
26 (7)  24 (R)  

u:2+up2i--= V?+ v,*+-. 
M M 

Here 9 is the gravitational potential. 
Then we have, 

27rkT 

with 

The domain of integration is determined by the 
condition 

69 



70 a J O U R N A L  O F  T H E  A T M O S P H E R I C  S C I E N C E S  VOLUME 20 

Let 

MV,t MV,z 
-Yl - x ,  -- -- 

2kT 2kT 

Equation (13) corresponds to the integral equation 
(16) of 6pik and Singer (1961). It differs from the 
barometric formula 

ph(r )  = Noe-(l-a)E (14) 
R 

-=*, _- - f f .  
4 

kT 7 

by a term N,(1-a2)te-El(1+a). This term is zero when 
CY= 1 (i.e., r = R ) ,  it increases when a decreases, and its 
asymptotic value at a=O (i.e., Y= a) is Noe-E. 

The physical interpretation for this term can be ex- 
plained by a study of the particle velocity distribution 
in the exosphere, From ( 2 )  and (3) we obtain 

Then 

P T G )  = NocU27r-+(I1+Iz), (6) 
where 

In (8) let Z =  [(l-a2)x+y-~(r)+~(R)] and 

(10) 
0 = tan-’ [y -G ( I )  +G (R)lr 

(1 - ff”x 

After integration and simplification we have 

7r+ 
Iz = -{ e-[$(r)-$(R)l- (1 -,2)te-[$(r)-$(R)I). (11) 

f f 2  

Substituting (9) and (11) into (7), we obtain a general 
expression for the density distribution of the ballistic 
component: 

p T  ( r )  = No{ e- I+(r)-$ (R) 1 

1. (12) - (1 [$(r)-S(R) 1/(1-d) 

where Vm=(2KTE/M)+ is the escape velocity at  the 
base of the exosphere. 

This inequality (16) sets a limit on the velocity of 
ballistic particles. Hence we may classify the particles in 
the exosphere into five components according to their 
velocity, as shown in Fig. 1. 

The particles whose velocities lie in regions (1) and ( 2 )  
came from the base of the exosphere and are distributed 
as a Maxwellian. However, the particles in region (1) 
do not have enough energy to overcome the gravita- 
tional potential so they will return to earth after a trip 
in the exosphere. This is the re-entry component. The 
particles in region (2)  are the escaping component. 

”P 

t 

In terms Of the gravitational constant G this may be 
rewritten as: 

FIG. 1. Classes of exospheric components in velocity space: 
1) ballistic re-entry, 2) ballistic escaping, 3) ballistic return-flux- 
of-escape, 4) bound-orbiting, 5) transient. As I increases (a 
decreases), the radius of the circle ( (a/ l+a)bVJ continues to 
decrease and the vertex of the hyperbola moves closer to the 
origin. The area of the transient component eventually covers the 
whole velocity space as I + 01. 

(1 -aZ)1/2e-E/(l+d ~ T ( Y )  = NO{e-(l-*)E- (13) 

where E = GMm/RkT. 
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Their total energy is greater than zero (u2>um2=a2VW2), 
and they will therefore go to infinity. In  the absence of 
collision and planetary plasma, these two are the only 
components found in the exosphere. In  other words, the 
particles are confined in a region of the velocity space 
bounded by a hyperbola (equation 16) and a quarter 
circle (u2=u,2, u,<O). 

The particles in region (3) are the return-flux-of- 
escape component. They came from infinity (outer 
space) and will fall into the base of the exosphere. Since 
the particles of these three components (1. 2, and 3 )  all 
possess baiiistic trajectories in the exospiiere, hey may 
be called the ballistic component. 

The particles in regions (4) and (5) do not intersect the 
base of the exosphere. They are created due to colIisions 
of ballistic particles. The particles in region (4) are the 
bound orbiting component and circle around the planet. 
The particles in region (5) may be called the transient 
component. They pass through the exosphere and will 
go back to interplanetary space. 

The barometric formula results from an isotropic 
Maxwellian velocity distribution; that is, all five regions 
in Fig. 1 are filled with particles distributed according 
to a Maxwellian law. This is true only if collisions are 
frequent enough. On the other hand, the formula (13) 
derived in this paper is based on the assumption that 
in the exosphere there are no collisions a t  all. Con- 
sequently, there cannot be particles in regions (4) and (5). 

The density of the return-flux-of-escape component, 
denoted by ps(r ) ,  equals the density of the escaping 
component, which can be calculated by first deriving 
the escaping flux. 

1 

* 

All the escaping particles come from the Maxwellian 
tail with average velocity very close to V,. 

(17) 

~~~ 
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FIG. 2. Comparison of the barometric distribution and the distri- 
bution derived in this paper (equation 13). 

where 
" n 3 1 L 

H(E)=-+ El+- for large E. 
2E d r e E  E 

l+-[l-erf(Ef)] 
aE& 

3 1 2 
H(E)=-+ El+- for large E. 

2E d r e E  E 
l+-[l-erf(Ef)] 

aE& 

Therefore the density distribution of the return flux of 
escape is given by 

TABLE 1. Density distribution in an exosphere, according to 
the barometric model ( P I , ) ,  bik-Singer (pb) ,  and the model given 
in this paper (pt and pa). 

ff P h  P b  Pt Pa 

1 100.00 100.00 100.00 98.89 
0.9 62.81 58.95 58.61 57.77 
0.8 39.46 34.75 34.901 34.26 
0.7 24.78 19.94 20.212 19.731 
0.6 15.57 10.99 11.302 10.951 
0.5 9.778 5.708 5.901 5.654 
0.4 6.142 2.707 2.835 2.673 
0.3 3.858 1.108 1.198 1.102 
0.2 2.423 0.347 0.404 0.357 
c. 1 1.522 0.057 0.070 0.057 
0 0.956 ... 0.00 0.00 
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In  Table 1 and Fig. 2 we compare our formula with 
the barometric formula and Opik-Singer’s numerical 
results. The density distribution of a real exosphere 
should lay between the two curves, depending on the 
efficiencv of collisions in the exomhere. 

Ackn6wledgment. I wish to expiess my thanks to Dr. 
K. P. Chopra and Dr. J. Herring for their stimulating 
discussion. 

REFERENCES 

( l+E)e-E or2 

-NO[ - 2 d  E*{ H ( E )  - 1+ [ 1 --QH(E)a} f ]* 
The p o  here is the actual density distribution of a 

Singer’s numerical results. 

c)pik, E. J., and S. F. Singer, 1959: Distribution of density in a 
planetary exosphere. Phys. Fluids, 2, 653-655. 
, 1961 : Distribution of density in a planetary exosphere 11. - collisionless exosphere. It should agree with Opik- 
Phys. F l ~ i d s ,  4, 221-233. 


